
3. Algebra 

Solving Equations ax + b = cx + d 

Algebra is like one big number guessing game.  

 

“I’m thinking of a number. If you multiply it 

by 2 and add 5, you get 21.” 

 

2x + 5 = 21 

 

For a long time in Algebra class, there are hundreds of equations to solve that can be put in the 

form ax + b = cx + d. Sometimes there’s no x term on one side, meaning the coefficient is zero. 

 

3x - 5 = 22 

4x - 12 = 2x - 9 

 

 
    

 

 
 
 

 
  
 

 
 

 

Using a little Algebra, you can solve the general form of the equation and that will help you 

solve all equations of that form. 

 

ax + b = cx + d 

ax - cx = d - b 

x(a - c) = d - b 

    
   

   
 

 

Now we can write a function to take the coefficients of the equation you want to solve and return 

that value of x: 

 

def equation(a,b,c,d): 

    '''Returns the solution of an equation 

    of the form ax + b = cx + d''' 

    return (d - b)/(a - c) 

 

See how I translated the algebra solution to the output of the function? To solve our first 

equation 3x - 5 = 22, enter the coefficients, with c being 0: 

 

>>> equation(3,-5,0,22) 

9.0 

 



That’s true: 3(9) - 5 = 22. How about the second equation? (4x - 12 = 2x - 9) 

 

>>> equation(4,-12,2,-9) 

1.5 

 

Yes, 4(1.5) - 12 = -6 and 2(1.5) - 9 = -6.  

 

To solve the equation 

              

Enter this: 

>>> equation(2,-8,4,5) 

-6.5 

 

Using the Pythagorean Theorem 

 

Here’s a very useful program to solve for the third side of a right triangle using the Pythagorean 

Theorem: 

from math import sqrt 

     

def pythag(leg1,leg2): 
    '''solves for hypotenuse''' 
    return sqrt(leg1**2 + leg2**2) 

 

def pythag2(leg1,hyp): 
    '''solves for other leg 
    of right triangle''' 
    return sqrt(hyp**2 - leg1**2) 

>>> pythag(5,12) 

13.0 

>>> pythag2(24,25) 

7.0 

 

Solving Higher-Degree Equations 

Algebra is where Python starts to really get useful. At some point in Algebra, the book starts 

using “f(x) =” instead of “y =”.  Mathematical functions are like machines where you put a 

number in (the input), the machine does something to it, then returns a number (the output). 

 

We’ve already seen how easy this is in Python. We’ve made functions that take parameters like 

“length” and “number” like: 

 

def square(length): 

    for i in range(4): 

        fd(length) 

        rt(90) 

 



and 

 

def equation(a,b,c,d): 
    return (d - b)/(a - c) 

 

We already know how to take in input and return output. So when an Algebra book gives us a 

problem like this one: 

 

Let  ( )         . Find f(2) and f(10). 

 

We can define the function f(x) like any Python function, input numbers and get the output 

instantaneously: 

 

def f(x): 
    return x**2 + 5*x + 6 

 

>>> f(2) 

20 

>>> f(10) 

156 

 

Program: Factoring Polynomials 

Some algebra textbooks make you factor a lot of polynomials. Here’s how to make a computer 

do it by brute force.  

 

You know the expression          (if it’s factorable) must split up into the form 

(    )(    ) 

 

d and f are factors of a and e and g are factors of c. All you have to do is go through all the 

factors of a and all the factors of c, and see if d * g + e * f equals b. An annoying job for a human 

but the computer doesn’t mind all that repetition. We can’t just import our factors function for 

this one, because we need to include the negative factors. Here’s the updated function: 

 

def factors(n): 

    '''returns a list of the positive and 

    negative factors of a number''' 

    factorList = [] 

    n = abs(n) #absolute value of the number 

    for i in range(1,n+1): #all the numbers from 1 to n 

        if n % i == 0: #if n is divisible by i 



            factorList.append(i) #i is a factor 

            factorList.append(-i) # so is -i 

    return factorList 

 

Now factoring the polynomial is just a matter of plugging in the factors of a and c and seeing 

which combination adds up to b. 

 

def factorPoly(a,b,c): 

    '''factors a polynomial in the form 

    ax**2 + b*x + c''' 

    afactors = factors(a) #Get the factors of a 

    cfactors = factors(c)   # and c 

    for afactor in afactors: #try all the factors of a 

        for cfactor in cfactors: #and c 

   #see which combination adds up to b 

            if afactor * c/cfactor + a/afactor * cfactor == b: 

                print('(',afactor,"x +",cfactor,")(", 

                      int(a/afactor),"x +",int(c/cfactor),")") 

                return 

 

Here’s how to factor the polynomial         : 

>>> factorPoly(6,-1,-15) 

( 2 x + 3 )( 3 x + -5 ) 

 

Program: Quadratic Formula 

 

But factoring polynomials is of limited value because not all quadratics are factorable. There’s a 

better way to solve equations involving an x
2
 term: the quadratic formula. It’ll give you solutions 

that are whole numbers or decimals, real numbers or imaginary! 

 

def quad(a,b,c): 

    '''Returns the solutions of an equation 

    of the form a*x**2 + b*x + c = 0''' 

    x1 = (-b + sqrt(b**2 - 4*a*c))/(2*a) 

    x2 = (-b - sqrt(b**2 - 4*a*c))/(2*a) 

    return x1,x2 

 

If you need to solve the quadratic equation x
2
 + 3x - 10 = 0, you would enter 1 for a, 3 for b and -

10 for c this way: 

 



>>> quad(1,3,-10) 

(2.0, -5.0) 

 

That means the values for x that make the equation true are 2 and -5. To check them, you plug in 

those values for x: 2
2
 + 3(2) - 10 = 0 and (-5)

2
 + 3(-5) - 10 = 0 

 

With a little more coding the quadratic formula can give you solutions whether they’re whole 

numbers, fractions, decimals, irrationals, even imaginary numbers. It all depends on whether the 

“discriminant,” b
2
 - 4ac, is positive or negative. 

 

from math import sqrt 

 

def quad(a,b,c): 

    '''returns solutions of equations of the 

    form a*x**2 + b*x + c = 0''' 

    discriminant = b**2 - 4*a*c 

    if discriminant >= 0: #real solutions 

        x1 = (-b + sqrt(discriminant))/(2*a) #first solution 

        x2 = (-b - sqrt(discriminant))/(2*a) #second solution 

        return x1, x2 

    else: #imaginary solutions 

        real_part = -b/(2*a) 

        imaginary_part = sqrt(-discriminant)/(2*a) 

        print(real_part,"+",str(imaginary_part)+"i") 

        print(real_part,"-",str(imaginary_part)+"i") 

 

Now it will solve the quadratic even if there are only imaginary solutions. 

 

>>> quad(1,3,10) 

-1.5 + 2.7838821814150108i 

-1.5 - 2.7838821814150108i 

 

Higher order solutions (for equations with x
3
 or x

4
 and so on) require other methods. 

 

Brute Force 

You could just plug in every number you can think of. Actually, this is pretty easy for a 

computer. To solve the equation 6x
3 

+ 31x
2
 + 3x - 10 = 0, for example, you could just have the 

computer plug in every number between -100 and 100 for x and if it equals zero, print it out: 

def plug(): 

    for x in range(-100,100): 

        if 6*x**3 + 31*x**2 + 3*x - 10 == 0: 



            print("One solution is", x) 

    print("Done plugging.") 

 

>>> plug() 

One solution is -5 

Done plugging. 

 

So the other solutions to that equation are not integers. You could change the program to plug in 

decimals, too. 

 

def plug(): 

    x = -100 

    while x <= 100: 

        if 6*x**3 + 31*x**2 + 3*x - 10 == 0: 

            print("One solution is", x) 

        x += 0.5 #Will go up in half-unit steps 

    print("Done plugging.") 

 

>>> plug() 

One solution is -5.0 

One solution is 0.5 

Done plugging. 

 

But is there a better way? There is a name for a method of solving equations by showing every 

possible input and output of a function within a certain range and it’s called graphing.  

Major Math Tool: Create Your Own Grapher 

What better tool is there for exploring functions than a graph? There are many graphing 

calculators and programs out there (some are free!) but many math teachers don’t allow students 

to use graphers. What if the student made the grapher tool? We can use the turtle module to 

create graphs of lines and curves. First you have to define how to draw a grid. 

 

from turtle import * 

def setup(): 

    speed(0)      #Sets turtle speed to fastest 

    setworldcoordinates(-5,-5,5,5) #lower left and upper right corners 

    setpos(0,0)     #sets turtle's position to (0,0) 

    clear()         #Clears its trails 

    setheading(0)   #Faces the right of the screen 

    pd()            #Puts its pen down to draw 



    color("black")  #Sets its color to black     

    for i in range(4):  #"Do this four times" 

        setpos(0,0)     #Centers itself again 

        fd(5)           #Go forward 5 steps 

        rt(90)          #turn right 90 degrees 

    pu()            #Sets its pen in up position  

 

If you type “setup()” in the shell you’ll see this: 

 

 
 

Now you have to define the function for the turtle to draw.  

 

def f(x):           #This defines the function f(x) 

    return 2*x + 3  #The line y = 2x + 3 

 

def graph(f):    #The function f(x) has to be defined 

    speed(0)    #Sets speed to the fastest 

    color("black")  #Sets its color 

    setpos(-6,f(-6))    #Sets its position to the left edge 

    pd()                #pen down 

    setheading(0)       #Face right 

    x = xcor() #set a variable, x, to the x-coordinate of the turtle 

    while xcor() <= 6:  #Do this until the x-coordinate is more than 6 

        x += 0.01       #make x go up a tiny bit 

        goto(x,f(x))    #Go to the next point on the graph 

 

You’ve defined the functions, but you haven’t told the program to run those functions yet. You 

can type commands in the shell or add this to the end of the program: 

#Execute these functions automatically on "run" 

setup() 

graph(f) 



 

Your output should be a line: 

 

The great thing about having this tool is it will come in handy for all your math subjects from 

Algebra to Differential Equations!  

 

If you add ticks to the axes, then you can graph a function and maybe the solution will be easy to 

see. Here’s the setup program for a grapher with ticks: 

 

#Grapher with tick marks at whole numbers 

from turtle import * 

 

def mark(): #to make a tick mark on an axis 

    rt(90)  #turn right 90 degrees 

    fd(0.1) #go forward a little bit 

    bk(0.2) #go back twice as far. The tick is drawn. 

    fd(0.1) #go forward to the axis 

    lt(90)  #turn left to continue drawing the axis 

     

def setup(): 

    speed(0) #Sets turtle speed to fastest 

    setworldcoordinates(-6,-5,6,5) #lower left and upper right corners 

    setpos(0,0)     #sets turtle's position to (0,0) 

    clear()         #Clears its trails 

    setheading(0)   #Faces the right of the screen 

    pd()            #Puts its pen down to draw 

    color("black")  #Sets its color to black     

    for i in range(4):  #"Do this four times" 



        setpos(0,0)     #Centers itself again 

        for i in range(6): #Make 6 tick marks 

            fd(1)        

            mark()       

        rt(90)           

    pu()            #Sets its pen in up position 

 

Run this and you’ll get a pretty graph. 

 

We’ll use our grapher to solve our equation 6x
3 

+ 31x
2
 + 3x - 10 = 0. First, graph the function 

f(x) = 6x
3 
+ 31x

2
 + 3x - 10. 

 

 

Change the “def f(x)” line of code: 

 

def f(x):#This defines the function f(x) 

    return 6*x**3 + 31*x**2 + 3*x - 10   
 
and run it. The graph is on the left. We knew about the 

solutions at x = -5 and at x = 0.5 and now we can tell 

there’s a solution between -1 and 0. 

 

Rational Roots 

We can narrow down all the possible rational roots (whole numbers or fractions) by dividing all 

the factors of the constant term (in this case, -10) by all the factors of the coefficient of the 

highest degree of x (in this case, 6). This is the list, positives and negatives: 

 

                                   10/3 

 

It used to be a whole lot of work to plug in a couple of dozen numbers, but that was before 

computers. Now we can just write a program to generate all those roots and plug them in for us. 

First we need the factors function (which we saved in our arithmetic.py file), which returns a 

list of all the factors of a number: 

 

from arithmetic import factors 

  

We can use this function to generate all the possible rational roots of our equation. Here’s the 

function: 

 

def rationalRoots(a,b): 



    '''Returns all the possible rational roots of 

    a polynomial with first coefficient a and 

    constant b'''     

    roots = [] #create a list to store the roots 

    numerators = factors(b) # generate a list of factors of b 

    denominators = factors(a) # generate a list of factors of a 

    for numerator in numerators: #loop through the numerator list 

        for denominator in denominators: #and the denominator list 

            roots.append(numerator / denominator) 

            roots.append(-numerator / denominator) 

    return roots 

 

Now if I put in 6 for a and 10 for b: 

 

>>> rationalRoots(6,10) 

[1.0, -1.0, 0.5, -0.5, 0.3333333333333333, -0.3333333333333333, 

0.16666666666666666, -0.16666666666666666, 2.0, -2.0, 1.0, -1.0, 

0.6666666666666666, -0.6666666666666666, 0.3333333333333333, -

0.3333333333333333, 5.0, -5.0, 2.5, -2.5, 1.6666666666666667, -

1.6666666666666667, 0.8333333333333334, -0.8333333333333334, 10.0, -

10.0, 5.0, -5.0, 3.3333333333333335, -3.3333333333333335, 

1.6666666666666667, -1.6666666666666667] 

 

We already have a plug function, so I can just change it a little to plug in all those values. 

 

def plug2(factorlist): 

    for x in factorlist: 

        if 6*x**3 + 31*x**2 + 3*x - 10 == 0: 

            print("One solution is", x) 

    print("Done plugging.") 

 

Execute the plug function on the factor list: 

 

>>> plug2(rationalRoots(6,10)) 

One solution is 0.5 

One solution is -0.666666666666 

One solution is -5.0 

One solution is -5.0 

Done plugging. 

 

The root x = -5 came up twice (-5/1 and -10/2). Now we know our three solutions: x = -5, x = -



⅔ and x = ½. 

 

Now we can use the tools we just created to easily generate all the rational solutions to any 

polynomial equation. For example, if we wanted to solve the equation  

 

48x5 - 44x4 - 884x3 + 321x2 + 3143x + 980 = 0.  
 

What a monstrosity! But the worst part is typing it all out: 

 

def h(x): #define the function so we can use "graph(h)" 

        return 48*x**5 - 44*x**4 - 884*x**3 + 321*x**2 + 3143*x +980 

 

def plug3(): 

    '''plugs every item in a list of factors into h(x)''' 

    for x in rationalRoots(48,980):  

        if h(x) == 0: 

            print("One solution is", x) 

    print("Done plugging.") 

 

Now the program does all the work instantly: 

>>> plug3() 

One solution is 4.0 

One solution is 2.5 

One solution is -3.5 

One solution is -1.75 

One solution is 2.5 

One solution is -3.5 

One solution is -1.75 

One solution is 2.5 

One solution is -3.5 

One solution is -1.75 

Done plugging. 

 

There’s some repetition here; there are four rational solutions above.  

x = -3.5, -1.75, 2.5 and 4. 

 

Here’s the graph:  



 

 

It looks like there’s another root between -1 

and 0. This method fails if there’s a repeating 

decimal, like -0.33333… because if you plug 

that decimal into the equation you don’t get 

zero. You get something tiny like a trillionth, 

but technically it’s not equal to zero so our 

function threw it out. But there is a way to use 

the roots we know to get more roots. 
 

 

Synthetic Division 

Synthetic division is a way to do long division on polynomials. It’s time consuming to do by 

hand, but it’s easy to write a program to make the computer do it. Because we know x = 4 is a 

root of 48x
5 
- 44x

4
 - 884x

3 
+ 321x

2
 + 3143x + 980, we know we can write it as 

(x - 4)(???) = 48x
5 

- 44x
4
 - 884x

3 
+ 321x

2
 + 3143x + 980 

  

“(???)” is a fourth-degree polynomial. We can divide the polynomial 48x
5 

- 44x
4
 - 884x

3 
+ 321x

2
 

+ 3143x + 980 by x - 4 to find out what it is. 

 

def synthDiv(divisor,dividend): 

'''divides a polynomial by a constant and returns a lower-degree 

polynomial. Enter divisor as a constant: (x - 3) is 3 

    Enter dividend as a list of coefficients: 

    x**2 – 5*x + 6 becomes [1,-5,6]'''  

    quotient = [] #empty list for coefficients of quotient 

    row2 = [0]   #start the second row 

    for i in range(len(dividend)): 

        quotient.append(dividend[i]+row2[i]) #add the ith column 

        row2.append(divisor*quotient[i]) #put the new number in row 2 

    print(quotient) 

 

And here’s how to enter it: 

>>> synthDiv(4,[48,-44,-884,321,3143,980]) 

[48, 148, -292, -847, -245, 0] 

 

Those are the coefficients of the new polynomial. It’s 

48x
4
 + 148x

3 
 - 292x

2
 - 847x - 245. The last number is the remainder of the division, which is 0. 



 

So we’ve factored  

 

48x
5 

- 44x
4
 - 884x

3 
+ 321x

2
 + 3143x + 980  

 

into  

 

(x - 4)(48x
4
 + 148x

3 
 - 292x

2
 - 847x - 245) 

 

We can keep doing this with all the other factors we know, like 2.5. Copying and pasting the 

factor list: 

>>> synthDiv(2.5,[48, 148, -292, -847, -245]) 

[48, 268.0, 378.0, 98.0, 0.0] 

 

Now we’ve factored our polynomial further into 

 

(x - 4)(x - 2.5)(48x
3 
 + 268x

2
 + 378x + 98) 

 

Using the factor x = -3.5: 

>>> synthDiv(-3.5,[48, 268.0, 378.0, 98.0]) 

[48, 100.0, 28.0, 0.0] 

 

Now our factored polynomial becomes: 

(x - 4)(x - 2.5)(x + 3.5)(48x
2
 + 100x + 28) 

 

We can put the coefficients in the x
2
 expression into the Quadratic Formula to find our last two 

roots: 

>>> quad(48,100,28) 

-0.333333333333 -1.75 

 

We already knew x = -1.75 is a solution, and now we know the last one is x =  -0.33333333. 

 

Synthetic Division can help us find all the rational roots of a polynomial, no matter how ugly it 

is! It can even help us find irrational roots, because we used the quadratic formula to find the last 

two roots. 

 

Use this program to find all the solutions to the equation 

8x
6
 - 206x

5 
+ 1325x

4
 + 1273x

3 
- 14980x

2
 - 17825x - 4875 = 0  

 

Hint: four solutions are rational, and two are irrational. 

 



Exploring Prime Numbers 

Program: IsPrime() 

Here’s a good exploration for learning to use loops and conditionals. It tests whether a number is 

prime. You have to divide by 2, then 3, and so on up to which number? The number minus one? 

Half the number? 

 

Remember the modulo or “mod” operator. Its symbol is the percent sign (%). The remainder 

when you divide 10 by 3 is: 

 

>>> 10 % 3 

1 

 

This allows us to check whether a number is divisible by another one. Let’s create a “divisible” 

function: 

 

def divisible(a,b): 

    '''Returns True if a is divisible by b''' 

    return a % b == 0 

 

We can use this function inside an “isPrime” function. To test whether 61 is prime, we just 

divide 61 by every number less than 61: 

 

def isPrime(n): 

    for i in range(2,n): #every number from 2 to n - 1 

        if divisible(n,i): #if n is divisible by i 

            return False    #n is not Prime (and stop) 

    return True     #if it hasn't stopped, n is Prime 

 

Here’s how you check: 

>>> isPrime(61) 

True 

  

But what if it isn’t? You need to factor the number if it isn’t Prime: 

def isPrime2(n): 

    '''Returns "True" if n is Prime''' 

    for i in range(2,n):  

        if divisible(n,i): 

            print (n,"=",i,"x",n/i) 

            return  

    return True 



 

>>> isPrime2(161) 

161 = 7 x 23.0 

 

How many numbers do we really have to divide by? For example, we check the number 101. 

The number we divide by (i) starts off smaller than n/i, but somewhere it gets bigger. Can you 

tell where? 

 

n       i       n/i 

101      1      101.0 

101      2      50.5 

101      3      33.6666666667 

101      4      25.25 

101      5      20.2 

101      6      16.8333333333 

101      7      14.4285714286 

101      8      12.625 

101      9      11.2222222222 

101      10      10.1 

101      11      9.18181818182 

101      12      8.41666666667 

101      13      7.76923076923 

 

It’s between 10 and 11. This means there’s no way there could be a factor of 101 bigger than 11 

because it would have to be multiplied by a number smaller than 11. And we’ve checked all 

those numbers already. What’s this magic point in between 10 and 11? The square root of 

101. 

Change your code to: 

 

from math import sqrt 

def isPrime3(n): 

    m = sqrt(n) 

    for i in range(2,int(m) + 1): #range has to be integers 

        if divisible(n,i): 

            print(n,'=',i,'x',n/i) 

            return 

    return True 

 

Can you modify this code to print out every prime number up to “n”? 

 

Here’s how to print out a list of n primes. We’ll use the original “isPrime” function and create a 



“primeList” function: 

 

def primeList(n): 

    prime_list = [] 

    num = 2 

    while len(prime_list) < n: 

        if isPrime(num): 

            prime_list.append(num) 

        num += 1 

    print(prime_list) 

 

To get a list of 10 Primes: 

>>> primeList(10) 

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29] 

 

Binary Numbers 

How can we convert a decimal number to binary? 

 

27 11011 

decimal binary 

 

The place values in decimal are ones or 10
0
, tens or 10

1
, hundreds (10

2
) and so on. First we need 

to find out the largest power of  2 we need to work with. In the case of 27, the we check to see 

the lowest exponent of 2 that’s smaller than 27. 2
5
 is bigger so 2

4
 (16) is the highest power of 2 

we’re dealing with. Here’s how you check for that in Python. 

 

First loop through the powers of two until the power of two is bigger than the decimal number. 

Then take away 1 from the exponent: 

 

number = 27 

exponent = 0 

binary_number = 0             

while number >= 2**exponent:  

    exponent += 1             

exponent -= 1 

 

“exponent” is now 4, so that’s 5 times we have to check powers of 2. If “number” is bigger, we 

take away that power of 2 and add that power of 10 so there’s a 1 in that column. 



if 27 is bigger than 2
4
, take away 16 (number is now 11) and add 10

4
 

if 11 is bigger than 2
3
, take away 8 (number is now 3) and add 10

3
 

and so on. 

 

for i in range(exponent + 1): 

if number - 2**exponent > -1: 

    binary_number += 10**exponent 

    number -= 2**exponent 

exponent -= 1 

 

And when the loop is done, print out the binary number. Here’s the whole code: 

Program: Binary converter 

 

def binary(number): 

    '''Converts decimal number to binary''' 

    exponent = 0    #We're dealing with exponents of 2 

    binary_number = 0            #The binary form of the number 

    while number >= 2**exponent: #Finds the lowest power of 2 

        exponent += 1            #the number is less than 

    exponent -= 1 

    for i in range(exponent + 1): 

        if number - 2**exponent > -1: #If number contains power of 2 

            binary_number += 10**exponent #Add that power of 10 

            number -= 2**exponent  #Take away that power of 2 from        

                                   #number 

        exponent -= 1              #Next lower exponent 

    return binary_number 

 

What’s the number 30 in binary? 

 

>>> binary(30) 

11110 

 

Yes, because 16(1) + 8(1) + 4(1) + 2(1) = 30   



The tools so far 
We've made quite a few useful tools in this chapter! 

 

equation 

pythag 

factors 

factorPoly 

graph 

plug 

rationalRoots 

synthDiv 

isPrime 

binary 

 

Save them to a file called algebra.py and we’ll be able to easily import them for future use. 

 

Algebra Exercises (Answers on page 141) 

 
In problems #1 - 8, solve the equation for x. 

 

1. 3x - 5 = 34. 

 

2. 7x + 25 = 2x – 20 

 

3. x
2
 - 13x + 40 = 0 

 

4. 5x
2
 - 25x - 29 = 0 

 

5. 12x
3
 + 68x

2
 - 115x - 21 = 0 

 

6. 105x
4
 + 326x

3
 -369x

2
 + 34x + 24 = 0 

 

7. 315x
6
 - 709x

5
 + 1870x

4
 - 1473x

3
 - 5743x

2
 + 3976x = 588 

 

8. 378x
7
 - 4737x

6
 + 5380x

5
 + 6548x

4
 - 6439x

3
 - 4190x

2
 + 1256x + 704 = 0 

 
9. What is the (base 10) number 44 in binary? 

 

Is 1,000,001 (a million and 1) a prime number? If not, factor it. 


